2 resultados para Altitudinal distribution

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the determination of the realized thermal niche and the effects of climate change on the range distribution of two brown trout populations inhabiting two streams in the Duero River basin (Iberian Peninsula) at the edge of the natural distribution area of this species. For reaching these goals, new methodological developments were applied to improve reliability of forecasts. Water temperature data were collected using 11 thermographs located along the altitudinal gradient, and they were used to model the relationship between stream temperature and air temperature along the river continuum. Trout abundance was studied using electrofishing at 37 sites to determine the current distribution. The RCP4.5 and RCP8.5 change scenarios adopted by the International Panel of Climate Change for its Fifth Assessment Report were used for simulations and local downscaling in this study. We found more reliable results using the daily mean stream temperature than maximum daily temperature and their respective seven days moving-average to determine the distribution thresholds. Thereby, the observed limits of the summer distribution of brown trout were linked to thresholds between 18.1ºC and 18.7ºC. These temperatures characterise a realised thermal niche narrower than the physiological thermal range. In the most unfavourable climate change scenario, the thermal habitat loss of brown trout increased to 38% (Cega stream) and 11% (Pirón stream) in the upstream direction at the end of the century; however, at the Cega stream, the range reduction could reach 56% due to the effect of a ?warm-window? opening in the piedmont reach.